skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rice, Daniel_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Demographic inference methods in population genetics typically assume that the ancestry of a sample can be modeled by the Kingman coalescent. A defining feature of this stochastic process is that it generates genealogies that are binary trees: no more than 2 ancestral lineages may coalesce at the same time. However, this assumption breaks down under several scenarios. For example, pervasive natural selection and extreme variation in offspring number can both generate genealogies with “multiple-merger” events in which more than 2 lineages coalesce instantaneously. Therefore, detecting violations of the Kingman assumptions (e.g. due to multiple mergers) is important both for understanding which forces have shaped the diversity of a population and for avoiding fitting misspecified models to data. Current methods to detect deviations from Kingman coalescence in genomic data rely primarily on the site frequency spectrum (SFS). However, the signatures of some non-Kingman processes (e.g. multiple mergers) in the SFS are also consistent with a Kingman coalescent with a time-varying population size. Here, we present a new statistical test for determining whether the Kingman coalescent with any population size history is consistent with population data. Our approach is based on information contained in the 2-site joint frequency spectrum (2-SFS) for pairs of linked sites, which has a different dependence on the topologies of genealogies than the SFS. Our statistical test is global in the sense that it can detect when the genome-wide genetic diversity is inconsistent with the Kingman model, rather than detecting outlier regions, as in selection scan methods. We validate this test using simulations and then apply it to demonstrate that genomic diversity data from Drosophila melanogaster is inconsistent with the Kingman coalescent. 
    more » « less